南郊小学备课组记录表
四年级数学 备课组 组长 秦海燕 活动时间 9.25
主题: |
需要调商的两三位数除一位数竖式计算 |
主持人: |
王根生 |
对象: |
四数老师 |
地点 |
二办 |
日期 |
9.25 |
王:例5是教学初商过大要调小,当学生发现初商与除数相乘,得到的积306比被除数272大时,借助除数是一位数的除法经验来理解:不够减了,表明商大了,要调小。例6教学初商过小要调大,当学生发现余数和除数相等时,也可以借助除法计算经验理解:如果余数等于或大于除数,表示商小了,要调大。当然对于初商过大或过小,还可以根据联系实际问题来理解。在调商的教学中应该帮助学生理清三点:为什么会出现初商过大或过小的情况?如果发现初商过大或过小?如何调商?配合调商这一-内容教材在练习四中安排了-些题组练习。比如,第1题,第5题、第9题。每组两道题。同组题中两题的试商方法相同,初商也相同,其中一题不需要调商,另一题要调商。这些题组让学生明白:计算每一道除法都应该试商,有些题的初商就是所求的商,有些题的初商需要适当调整。第11题编排三个题组,同组两道除法题的被除数相同,除数不同。其中-道题的除数要“四舍”看作整十数进行试商,初商要调小;另一道题的除数要“五入”看作整十数进行试商,初商要调大。这些题组有助于学生全面掌握试商方法和调商方法。第16题编排三个题组,要求学生“说说商的最高位可能是几”,有时 得到的初商需要调整,回答商的.最高位上的数,可以是初商,也可以是调整以后的商。 秦:第三部分教学例7、例8,应用商不变规律进行除法计算。例题7是教学商不变的规律,教材第一步提出“先按要求算一算、填一填,再比较算出的结果。”这就要求学生不仅要.填表,更要比一比算出的结果。学生就会发现除数和被除数都不同,但是商是相同的。在算除法时不同的算式怎么会算出相同的得数呢?这个时候学生对“商不变的规律”就有了初步的感知。接着教材继续引导“被除数和除数怎样变化的?商呢?你有什么发现?”这个环节是这道例题的重点,也是关键。而在这个过程中,学生自主发现商不变的规律,教材提供了三个小卡,它是有层次的。在教学中也要引导学生经历这三个层次的概括。首先引导学生发现“被除数和除数同时乘2或乘4,商不变。”这是根据具体的算式看到的。在这基础上引导学生归纳出被除数和除数同时乘-一个相同的数,商是不变的。第二层次是“同时除以2或除以4,商不.变。”同样,引导学生归纳出被除数和除数同时除以一个相同的数,商不变。最后引导学生再进行一次概括,得出“被除数和除数同时乘或除以一个数,商不变”的结论。这时就要告诉学生这里根据几道算式发现的规律只能算是猜想。我们还可以再找一些例子,算一算、比一比, 看商有没有变化,这就是引导学生去举例验证。最后获得结论、完善结论。关于0除外可以这样引导学生去理解:假如被除数和除数同时乘或除以0,那么无论哪种情况都会出现除数是0,而在除法里面是规定除数不能为0的,所以同时乘或除以的数不能为0。 候:例8应用商不变规律,使一些除法计算简便。有些除法,被除数和除数都是整十数、整百数或整千数,应用商不变规律能够转化成除数是一位数或两位数的除法。这种转化,能使口算与笔算简便些。教学900+ 50的计算,教材示范了竖式上应用商不变规律简化计算的方法与书写格式:根据除数末尾有一个“0”,在除数和被除数末尾各划去一个“0”。还通过“番茄”卡通的质疑“被除数的末尾为什么只划去一个0”,帮助学生理解这里是如何应用商不变规律的。体会如果被除数末尾划去两个0,除数末尾只划去一个0,那么被除数和除数就不是同时除以一个相同的数,商将发生变化。教学900+40的计算,重点放在被除数和除数同时除以一个相同的数,虽然商不变,余数却变了。这也是教学的难点。教材把这个知识点放在900元钱买单价40元的队号的实际问题里,通过可以买22把,还剩20元这个现实的答案,体会余数应该是20,不是2 (40X22+20等于900,40X 22+2不等于900)。另外,如果不应用商不变规律,直接计算900+ 40得到的余数是20,也能说明被除数和除数同时除以40,商虽然不变,但余数变了。 秦:秦志刚:下面结合除法计算的教学,谈谈解决实际问题的教学注意点。 本单元练习里编排了许多实际问题,有些是一步计算的问题,有些是两步计算的问题,但都与除法有关。 1. 解答一步计算的问题,要有意识积累数量关系的知识。 解答一步计算的问题,学生会很快列出算式并进行计算。编排这些一步计算的问题,其目的不仅在于练习除法计算,还可以体会相应的数量关系。比如,第11页练习二第8题,玫瑰花的总枝数+每束的枝数=束数....剩下的枝数。因此,教学一步计算的实际问题一方面要注意学生的计算是不是正确,另一方面要让他们说说具体的数量关系。值得注意的是练习二第15题,第一次解答已知长方形的面积和长的数量,求宽是多少的实际问题,教材希望学生按自己的想法求出长方形的宽,并联系乘、除法的关系,逐步形成有结构的数量关系式:长X宽=长方形面积,长方形面积一长=宽,长方形面积+宽=长。 2.解答两步计算的实际问题,要加强解题思路的练习。 第一学段已经教学了许多两步计算的实际问题,并且以培养解决问题的策略和发展数学思考为目的,教学了从条件向问题的推理和从问题向条件的推理。本单元的练习里,编排了- - 些学生比较熟悉的两步计算实际问题,经常温习分析数量关系的方法,强化解题思路。学生解答这些实际问题,一般不会有困难。应该尽量让他们独立解题,并组织他们交流解题的思考。比如,练习二第14题,根据己知的300箱苹果和260箱梨,可以算出一共有多少箱水果;要求- -辆汽车几次运完这些水果,需要知道一共有多少箱水果和每次能运走几箱水果。此外,我们教研组还就学生的作业规范和本阶段的教学进度展开讨论,达成了共识,对以后的教学起很好的指导性作用。 |
活动成效: 梳理了课本18——31重难点 |
记录人 : 秦海燕
